

Population biology with *Plantago lanceolata* as a model system A focus on genetics and seed ecology

Stephanie H. Chen | Supervised by Prof. Glenda M. Wardle

Ecological forecasting and PlantPopNet

- Ecological forecasting predicts changes in ecosystems and ecosystem components in response to an environmental driver.
- Lack of sampling within-species over large spatial extents \rightarrow limited predictive capacity.

A spatially distributed model for population ecology

3 sites across 16 countries www.plantpopnet.com

Plantago lanceolata L. (Plantaginaceae)

Ribwort plantain, narrowleaf plantain, English plantain, lamb's tongue; 'field-rat'

- Rosette-forming, facultative perennial herb.
- Native to Eurasia and introduced to Australia.
- Self-incompatible (Ross Heredity, 1973)
- Reproduces sexually and asexually via cloning (Primark New Phytologist, 1978).

Species	Family	Plant part	Use	Web of Science	PHARMACOLOGY PHARMACY (42)
Plantago lanceolata L.	Plantaginaceae	leaf	stuffed, pie, salad	Web of Science	IMMUNOLOGY (38)
		STREET, STREET,			ALLERGY (37)
	1 K.S. (1997)	20201-2		Search	MYCOLOGY (32)
	ALC: NOT THE REAL PROPERTY OF				BIODIVERSITY CONSERVATION (31)
CTI SCELLE		5 5 A		Results: 1,280	ENTOMOLOGY (31)
	A REAL PROPERTY.	a field and		(from Web of Science Core Collection)	CHEMISTRY MEDICINAL (29)
		2		You searched for: TOPIC: ("Plantago	AGRICULTURE DAIRY ANIMAL SCIENCE (28)
				lanceolata")More	GEOSCIENCES MULTIDISCIPLINARY (27)
	STAD P	are as		PLANT SCIENCES (409)	FORESTRY (26)
		XILSIA		ECOLOGY (400)	MULTIDISCIPLINARY SCIENCES (26)
	- Real as In	Gall5-1.9		EVOLUTIONARY BIOLOGY (117)	GEOGRAPHY PHYSICAL (22)
and the second second	A Carlos a			AGRONOMY (111)	BIOLOGY (21)
	- A MA - 1 &	23.13.45		GENETICS HEREDITY (99)	INTEGRATIVE COMPLEMENTARY MEDICINE (2
		6 3.40		ENVIRONMENTAL SCIENCES (96)	HORTICULTURE (18)
			K SALAPARA PA	SOIL SCIENCE (85)	PALEONTOLOGY (17)

Dogan et al. *Economic Botany*, 2004

Plantago lanceolata L. (Plantaginaceae)

Ribwort plantain, narrowleaf plantain, English plantain, lamb's tongue; 'field-rat'

- Rosette-forming, facultative perennial herb.
- Native to Eurasia and introduced to Australia.
- Self-incompatible (Ross Heredity, 1973)
- <u>Reproduces sexually and asexually via cloning</u> (Primark *New Phytologist*, 1978).

Assumptions of the model

- 1. No clonal reproduction.
- 2. No seed bank.

Do clonality and the seed bank matter for ecological modelling? How important is a reproduction framework for making predictions about population performance?

Study site – Mt Annan, NSW

Photos by G Wardle and B Tamayo

Aim

Examine the spatial patterns of clonality in *P. lanceolata* at a fine-scale at the population level and relate the extent of clonality to level of plant density.

Plants stand still and wait to be counted.

Harper, Population Biology of Plants, 1977

Spatial point patterns in ecology

Regularity

Photo by G Wardle

Aim

Examine the spatial patterns of clonality in *P. lanceolata* at a fine-scale at the population level and relate the extent of clonality to level of plant density.

Plants stand still and wait to be counted.

Harper, Population Biology of Plants, 1977

Spatial point patterns in ecology

First order: Empty space function *F* and *G* function Second order: Ripley's *K* and Beslag's *L*

Regularity

Clustering

Distance (r)

Part 1 Spatial analyses and clonality Clustering Regularity Cm 10 -**Study site** -10-cm Ripley's K G function F function Beslag's L Clonality Ē transect PPN transect Google Earth 50 m @ 2018 Google

Clustering Regularity

4 individual plants = 4 genets

Photos by G Wardle and S Chen

Photos by G Wardle and S Chen

282 samples (putative genets)

lleleID A	lleleSeq Trimme	dS Chrom_B	Ba ChromPos	AInCnt_	BaAInE	value Chrom_Fu	u ChromPos Aln(Cnt_FuAIn	nEvalue SNP	SnpPositi(103_1	173	ros1_9 181_113	189_122 1	109_18	117_32	125_42	133_53	141_61	149_71	157_79	165_87	104ros1_	2 174_106	182_114	190_12	3
3393541 TO	GCAGAA TGCAGA	AGAGCAAA	A/ 0		0	999	0	0	999 8:A>T	8	0 -	(0 0		0 -) () (0	0 -	-		כ	0	0 -	
3403936 To	GCAGGA TGCAGG	GAGCTATTT	п 0		0	999	0	0	999 20:C>T	20	0	2 0	0 0		0 0) () ())	2 -		0 -		0	0	2
3402795 To	GCAGGT(TGCAGG	STGAAGATA	T 0		0	999	0	0	999 60:T>C	60	1	2 0) 2		1 0) () :	L :	L	1 2	2	1 :	1	0 -		0
4806946 To	GCAGGT TGCAGG	GTTCAGTCA	A. 0		0	999	0	0	999 37:A>C	37 -		0 0	0 0		1 -		L -		L	0 () -	-		2	0	2
3415248 To	GCAGCTITGCAGC	CTTTATGGAA	۹. 0		0	999	0	0	999 50:C>A	50 -	-	-	0 -		C) -)) -	-	-	-	-	-	-	
3422620 To	GCAGTTCTGCAGT	TGGGATAC	т 0		0	999	0	0	999 26:T>G	26	0	0 0	0 0		0 2	2 () ()	0	0 ()	0	0	0	0	0
8861238 T	GCAGTTT TGCAGT	TTAGCTAGO	G/ 0		0	999	0	0	999 17:A>T	17	0	0 0	0 0		0 0) () ())	0 () (0	0	0	0	0
4806979 To	GCAGTTI TGCAGT	TTCATCTCT	G 0		0	999	0	0	999 9:A>T	9 -		1 2	2 1		1 1	-)	2	0 -		0 -	-	-		1
3402048 To	GCAGCT/TGCAGC	CTACAAGTC	т, О		0	999	0	0	999 25:C>T	25	0	0 0)		0) () :	2)	0 -		0 0	כ	0 -		0
3415277 To	GCAGGG TGCAGG	GGAAAACA	A/ 0		0	999	0	0	999 56:T>A	56	0 -	-	-		0 -	-	-) -	-	-		0	2 -		0
00003687 T	GCAGGT TGCAGG	GTTTAGCCTT	r# 0		0	999	0	0	999 34:T>A	34 -	-	(0 0		0 0) -) -		0 () -		0	0 -		0
3394248 To	GCAGCA TGCAGC	CAAATATGT	A 0		0	999	0	0	999 45:C>T	45	2	0 2	2 2		0 0) () :	2	0	0 (0	0	2	0	0	0
3396835 To	GCAGTTT TGCAGT	TTGTAAATC	0 0		0	999	0	0	999 56:G>A	56 -	-	-	0		0 0) -) ()	0 :	L	0 -	-	-		0
4806380 To	GCAGAA TGCAGA	ΑΑΑΑΤΤΑΤ	т 0		0	999	0	0	999 53:A>G	53 -		0 0)		0) -	-) -	-		0 -		0	0	0
3420907 To	GCAGAA TGCAGA	ААААСААСА	AT 0		0	999	0	0	999 30:C>A	30	0	0 -	0		o () -	-)	1 -		0 0) -	-	-	
3407039 To	GCAGAA TGCAGA	AAAACAATA	AC 0		0	999	0	0	999 19:T>C	19 -	-	-	1		0 -		L -	-	-	1	L -	-		1 -		1
3393355 To	GCAGAA TOCAGA	AAACAGGC	0 0		0	999	0	0	999 47:C>A	47	0	0 -			-	-	-	-		0 () (0 -	-		0 -	
4806384 Tr		CACA	VT 0		0	999	0	0	999 35:G>A	35	2	0 2	2 0		0 0) () () (0	2 3	2	2	2	0	0	0
3400641	AA TGCAGA	AAAACo. 7	51						999 68:T>G	68	0	0 0	0 (0 () () () ()	0 () (0 0	0	0	0	0
48049	AGAA.	A		lar	h	D			999 16:T>G	16	0	0 (0 0		0 -) ()	0	0 (0	0 0	0	0 -		0
72110	CAGAA. A	AAA 5		aı	L	Π			999 36:G>A	36	0	0 0	0 0		0 0) -) () -	() (0 0	0	0	0	0
340704	AGAA.	- 7 6	1						999 14:A>G	14	0	0 0	0 0		0 0) () () (0	0 () (0 0	0	0	0	0
3389379	N 24	🗤 🔼 🗚	т с		DC	~l ~+	to		999 23:C>T	23	1 -	1	ι 1		0 -	-	-	-		1 () (0	1	1	1	1
4806386 To	GCAGA	📖 ст	T	זעוכ	7	ET	LE		999 43:G>A	43	0	0 0	1		2 () () :	2	0	0 :	L	0 0	0	0	0	0
00003725 T	GCAGAA. 6A		C						999 49:G>A	49	0	0 0	0 0		0 0) () () (0	0 () (0 0	0	0	0	0
3389159 To	GCAGAA TGCAGA	AAAATCATG	iA 0		0	999	0	0	999 46:G>T	46 -		0 1	ι 1		0 -	-	-	-		1 -	-	-	-	-		0
3385615 T	GCAGAA TGCAGA	AAATTGAT	G 0		0	999	0	0	999 15:4>C	15	0	0 0	0		0 0	a () (n .	n	0 0	n .	0 0	n –	0	0	0

SNP: single nucleotide polymorphism

Animation by Marc Christoforidis; Photos by S Chen

Clones – genotype match > 95 % and kinship coefficient > 0.45 (1576 SNPs)

MACD A

Areas of high plant density near clonality transect

Pilot study (Dublin, Ireland) ^유

- 1500 SNPs
- 17 putative genets
- 23 ramets represented
- Genet: 82 %
- Ramet: 91 %

cm

50

Ë

0

- 1280 SNPs •
- 21 putative genets ۲
- 31 ramets represented •
- Genet: 9.5 % •
- Ramet: 23 % •

- 1386 SNPs
- 57 putative genets
- 58 ramets represented ٠
- Genet: 3.5 %
- Ramet: 3.4 %

- ۲ 0 0 20 10 1327 SNPs

Duckpond A

50 .

40

30 -

20 ·

10-

50

CU

- 46 putative genets
 - 62 ramets represented

cm

- Genet: 24 %
- Ramet: 21 %

1240 SNPs

50

40

- 29 putative genets •
- 68 ramets represented ۲
- Genet: 21 % •
- Ramet: 21 % ۲

Relatively weak correlation between plant density and extent of clonality Adjusted $R^2 = 0.39$, n = 21 plots

Part 2 Seed ecology

Aim

Investigate the seed bank and relate functional traits to seed viability. Quantify the number of seeds in the soil seed bank and relate this to plant density.

Part 2 Seed ecology

100

75·

25

ability ± S.E 50 а

b T

field

а

com

25 °C, 16 h photoperiod for 26 days

29.3 seeds per inflorescence head

Part 2 Seed ecology – survival analysis

- Brown seeds have higher mass and higher probability of germination than black seeds.
- Commercial seeds 89.5 % germination (n = 1039) which was significantly higher than the field population (1493 seeds collected from 51 plants)
 14.7 % germination

Kaplan-Meier survivor curves

Cox proportional hazards model

 $h(t) = h_0(t) e^{(\beta_{OriginField}x + \beta_{ColourBrown}x + \beta_{OriginField:ColourBrown}x + lot as random effect + \varepsilon)}$

Factor	Coefficient	HR [95 % CI]
Origin		
Commercial	0	1 (reference)
Field	-0.9628	0.382 [0.1329, 1.0968]
Colour		
Black	0	1 (reference)
Brown	3.807***	45.02 [24.72, 81.99]
Interaction		
Commercial:Black	0	1 (reference)
Field:Brown	-2.426***	0.008837 [0.03952, 0.19763]

Part 2 Seed ecology – soil seed bank

- Soil sampling in each plot of clonality transect
- 20 samples total 70 seeds and 11 seedlings
- Majority of seeds in top 2 cm of soil

Part 3 Bringing it all together – population modelling

Aim

Integrate clonality and seed bank findings into the parameterisation of the population model and describe the effect on demographic parameters. Develop recommendations for PlantPopNet data collection and modelling based on findings.

5 bins

Matrix population models (Caswell 1988, 2001) quantify ways individuals survive and reproduce.

Life-cycle graph of Plantago lanceolata

Part 3 Bringing it all together – population modelling

Aim

Integrate clonality and seed bank findings into the parameterisation of the population model and describe the effect on demographic parameters. Develop recommendations for PlantPopNet data collection and modelling based on findings.

Part 3 Bringing it all together – population modelling

• Integral projection models (IPMs) are defined by a kernel, K.

$$n_{t+1}(z') = \int_{\Omega} \mathbf{K}(z) n_t(z) dz = \int_{\Omega} [\mathbf{P}(z', z) + \mathbf{C}(z', z) + \mathbf{F}(z', z)] n_t(z) dz$$

$$Size at t and (t + 1)$$

$$Survival (7.5 month timestep)$$

$$C(z', z) = \text{clone}(z) \text{ clonesNext}(z') \text{ cloneSize}(z')$$

$$\frac{\mathbf{K}(z', z) = (z', z') = (z', z') + (z', z$$

recruits from the seed bank

Part 3 Population modelling – key outputs

regressions

Part 3 Population modelling – key outputs

N _{t+1} = N _t + Births – Deaths + Immigrants – Emigrants	
Population growth rate (λ) = N _{t+1} /N _t	

 $\lambda > 1$ Population increasing $\lambda = 1$ Stable $\lambda < 1$ Population decreasing

VET	101 plants and 13 seedlings	+ seed bank	- seed bank
Y GEI	+ clonality (8.3 %)	1.102	1.063
â	- clonality	1.106	1.069
ИЕТ	152 rosettes (inc. 19 side- rosettes) and 14 seedlings	+ seed bank	- seed bank
Y RAMET	152 rosettes (inc. 19 side- rosettes) and 14 seedlings + clonality (6.7 %)	+ seed bank 0.9797	- seed bank 0.9375

Part 3 Population modelling – simulations

-- Genet (+SB) -- Genet (-SB) + Ramet (+SB) -- Ramet (-SB --- Genet (+SB) --- Genet (-SB) +- Ramet (+SB) --- Ramet (-SB 1.750 -1.750 -1.500 -1.500 -Population growth rate (A) - 0571 Population growth rate (A) 1.250 1.000 -1.000 -0.750 -0.750 -25 75 25 75 100 0 50 100 0 50 Germination (%) In clonal groups (%)

Clonality (0 – 100%)

Seed germination (0 – 100%)

- λ increases with increasing clonality and germination, except for the ramet models where clonality has no effect.
- Inclusion of a seed bank (SB) increases λ when there are dormant seeds.
- Importance of context-driven modelling.
 - $\lambda > 1$ Population increasing

 $\lambda = 1$ Stable

$\lambda < 1$ Population decreasing

Conclusions and future directions

- Relatively low level of clonality (under 10 %) was detected at the study site. A large range of clonality exists in *Plantago* (plots ranged from 0 to 91 %).
- A soil seed bank was present but limited.
- Clonality and seed bank will matter to different extents at different sites and we would like be able to predict levels. PlantPopNet add-on protocols have been developed.
- How will *Plantago* be affected by climate change?
- It is anticipated that the PlantPopNet population models will allow us to understand plant populations in different environments and provide decision-making tools to effectively manage our ecosystems and natural resources.

Plant Pop Net

www.plantpopnet.com

Acknowledgements

Glenda Wardle Desert Ecology Research Group

Australian Network for Plant Conservation Inc

Hannah McPherson

Maurizio Rossetto

Cathy Offord Jordan Scott Lotte von Richer

The Australian BOTANIC GARDEN Mount Annan

The Royal Botanic Garden Sydney

This research was supported by Wardle Lab Funds and a University of Sydney Honours Scholarship.