

Restoring a Threatened Ecological Community following mining Dr Lucy Commander

Luis Merino Martin, Peter Golos, Carole Elliott, Jason Stevens, Ben Miller

>>@lucy_commander

Mining in WA

Mining leases in WA cover 22,000 km²

- roughly 1/3 the size of Tasmania

"Rehabilitation is looming as one of the **major environmental policy issues**

of coming years as older mines begin to close" - WA EPA Annual Report 2014-15

"Without confidence that rehabilitation can successfully restore comparable ecological function post-disturbance at a large scale,

rehabilitation alone has limited value as a mitigation option

for reducing proposal impact." - WA EPA Annual Report 2012-13

Koolanooka Mine

- Sinosteel Midwest Corporation
- Iron Ore
- Banded Ironstone Formation
- Koolanooka Threatened Ecological Community
- Legacy site

Koolanooka Mine

Threatened Ecological Community

Ministerial Statement 811

Condition 13-3

The proponent shall **progressively rehabilitate** all areas disturbed in the implementation of the proposal, with the exception of the mine pits as described in Schedule 1 in accordance with the following:

1. Re-establishment of vegetation such that the following criteria are met within five years following the cessation of productive mining:

(a) flora and vegetation are re-established with <u>not less than 70 percent</u> composition (not including weed species) <u>of the known original species</u> diversity*; and

(b) weed coverage no more than that in undisturbed bushland in the area or less than 10%, whichever is the lesser.

*refer to ATA, 2004, Vegetation and Flora Assessment, Koolanooka, Midwest Corporation Limited, March 2004 and Ecologica, 2008a, Koolanooka Hills/Blue Hills Flora and Vegetation Survey, Midwest Corporation Limited September 2008

Research Partnership

- Research to underpin restoration practices in order to achieve ministerial conditions
- Project: 2012-2017
- Our approach:
 - 1. Define targets
 - 2. Methods of species return
 - 3. Optimising methods

1. Define targets

70% of what? Surveys to date

Survey	Year	Field method	Communities	Richness no. of species	Target: 70% richness
1:DEC TEC IRP survey	2003	11, 10x10m plots	5 associations	67	47
2:consultant 1	2004	>30, 50m transects	31 communities	207	145
3:DEC BIF survey	2006/08	50 <i>,</i> 20x20m plots	6 communities	217	152
4:consultant 2	2008	2 relevés	2 communities	47	33
5:consultant 3	2010	10, 20x20m plots	3 communities	96	67

1. Define targets

- Which species and how many?
- Target should be scale dependent
 - i.e. depend on the area to be restored
 - so, if the area is e.g. 200 m² you should return fewer species than 1000 m²

Species-area curve

1. Define targets

- An approach to richness target definition
- Outcome
 - Target community identified
 - Richness target clarified
 - Species for target community listed and prioritised

Reference community

- Contiguous
- "Undisturbed"
- TEC
- Same aspect, geomorphology and slope
- Mapped as 1 community

4.5 ha TEC impact

7 ha target / reference 10 random 20x20 m **Quadrats** (5.7% of 7 ha) - Species list - Cover scores

- Perennial stem density

Exhaustive search of remainder for new species - 8, 12.5m x 700m transects - 4 people, 2.5 hrs

2. Methods of species return depends on reproductive biology

3. Optimising plant return

- Transitions from seed to seedling
- Rock supplementation to overcome topsoil deficits
- How do soil properties and rainfall influence seedling emergence?

Optimising plant return: Transitions from seed to seedling

New

Seed traits are important in restoration

Saatkamp A, Cochrane A, Commander L, et al. 2018, A research agenda for seed-trait functional ecology. New Phytologist

Commander et al. Plant and Soil, submitted

Dormancy, in situ germination or in situ emergence limited several species

Optimising plant return: Rock supplementation to overcome topsoil deficits

- The problems:
 - Insufficient topsoil
 - Seedling emergence from waste unknown
- The innovative approach:
 - Mix topsoil with waste material (25%) to cover larger area
 - How soil traits influence emergence

Optimising plant return: Rock supplementation to overcome topsoil deficits

Merino-Martín et al. 2017, Overcoming topsoil deficits in restoration of semiarid lands: Designing hydrologically favourable soil covers for seedling emergence, Ecological Engineering 105, 102–117

Optimising plant return: How do soil properties and rainfall influence seedling emergence?

- Is emergence:
 - every year,
 - only when the rainfall is at least average or
 - only in high rainfall years?
- The innovative approach:
 - Constructed a 'rain-out' shelter, the first of its kind
 - 20x30 m, allowing 6, 10x10 m plots
 - Two irrigation regimes: average, above average

How do soil properties and rainfall influence seedling emergence? The findings:

- Under natural (ambient) rainfall, (a low rainfall year) emergence was very low
- Seedlings emerged in a simulated average and above average year
- Irrigation has the potential to stimulate recruitment

Commander et al. unpublished

Restoring the TEC

- 3 sources of plants
 - Topsoil spread
 - Broadcast seed mix with 32 species
 - Planted seedlings/cuttings of 5 species
- Various planting treatments
 - e.g. deep planted, treated with Salicylic acid
- 3 irrigation regimes
 - Unirrigated, single irrigation, continuous irrigation
- 2 landscape positions
 - Flat, slope

Project Outcomes

- Demonstrated that restoration of at least 70% species diversity of flora is achievable.
- Published a Restoration Guide.
- Extensive knowledge on BIF restoration for the benefit of the State
- AMEC Environmental Award
- 4 Honours students
- 3 popular articles
- 4 community tours and presentations
- Peer reviewed papers and conference presentations.

Contents lists available at ScienceDirect Ecological Engineering Journal homepage: www.elsevier.com/locate/ecoleng

Ecological Engineering 105 (2017) 102-112

Research articl

Overcoming topsoil deficits in restoration of semiarid lands: Designing hydrologically favourable soil covers for seedling emergence

Luis Merino-Martín^{a,b,c,*}, Lucy Commander^{b,c}, Zhun Mao^a, Jason C. Stevens^{b,c}, Ben P. Miller^{b,c}, Peter J. Golos^{b,c}, C. Ellery Mayence^{b,c,d}, Kingsley Dixon^{b,c,e}

Practitioner Restoration Manual

Acknowledgements

- SMC funding
- SMC staff site support
- Research Technicians
- BGPA collaborators
- BGPA facilities

